Make your own free website on Tripod.com

Elemental Composition And Water Content Of Rat Optic Nerve Myelinated Axons And Glial Cells:
Effects Of In Vitro Anoxia And ReOxygenation

LoPachin RM Jr, Stys PK
J NeuroSci 1995 Oct;15(10):6735-46
Albert Einstein College of Medicine, Dept of Anesthesiology, Montefiore Medical Center, Bronx, New York 10467-2490, USA
PMID# 7472432; UI# 96033763
Abstract

Electron probe x-ray microanalysis was used to measure water content and concentrations (mmol/kg dry weight) of elements (Na, P, S, Cl, K, Ca, and Mg) in Myelinated Axons and Glial Cells of rat Optic Nerve exposed to in vitro Anoxia and ReOxygenation.

In response to Anoxia, large, medium, and small diameter fibers exhibited an early (5 min) and progressive loss of Na+ and K+ regulation which culminated (60 min) in severe depletion of respective TransMembrane gradients.

As Axoplasmic Na+ levels increased during Anoxic exposure, a parallel rise in Ca+ content was noted.

For all Axons, mean water content decreased progressively during the initial 10 min of Anoxia and then returned toward normal values as Anoxia continued.

Analyzes of Mitochondrial areas revealed a similar pattern of elemental disruption except that Ca+ concentrations rose more rapidly during Anoxia.

Following 60 min of PostAnoxia ReOxygenation, the majority of larger fibers displayed little evidence of recovery, whereas a subpopulation of Small Axons exhibited a trend toward restoration of normal elemental composition.

Glial Cells and Myelin were only modestly affected by Anoxia and subsequent ReOxygenation.

Thus, Anoxic injury of CNS Axons is associated with characteristic changes in Axoplasmic distributions of Na+, K+, and Ca+.

The magnitude and temporal patterns of elemental Na+ and Ca+ disruption are consistent with reversal of Na+-Ca2+ exchange and subsequent Ca+ entry (Stys et al., 1992).

During ReOxygenation, elemental deregulation continues for most CNS fibers, although a subpopulation of Small Axons appears to be capable of recovery.



Medical Texts
Anatomy | Immune System | Lymphocytes | Meds
MHC | Movement | Cranial Nerves | Physiology


MS Glossary ThJuland's MSers' Glen - Our CyberHome Page Top The Glen's Gallery: Come & Share Our Stories MS Files MS Abstracts Site Index


Abstracts
ANS | Bladder | Cognition | Fatigue | Fluid | Genetics
Interferons | IVIG | Nitric Oxide | Optic Neuritis | Pain
Physiology | Prions | Prognosis | ReMyelinate | Steroids
Stress | Treatments | TNF | Uric Acid | Viruses



Copyright 1997 - 2011:
Permission is granted to MS Societies and all MSers to utilize information from these pages provided that no financial reward is gained and attribution is given to the author/s.